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The debonding process in a glassy polymer filled with glass beads during constant strain

rate tensile loading has been analysed both theoretically and experimentally. A model which

combines concepts of damage mechanics and the time dependence of interfacial strength

has been proposed and compared with experimental results on glass bead-filled

polystyrene. The stress—strain behaviour and the debonding could be modelled using

a Bartenev-type relation for the destruction of the interfacial bond and by considering the

gradual transformation on the initially well-bonded composite into foam. A good agreement

between calculated and experimental data was achieved.
Nomenclature
A

1
Constant, Kerner—Lewis equation (Equa-
tion 3)

B Debonding rate exponential constant
(Equation 7)

B
1
, B

2
Constants, Kerner—Lewis equation (Equa-
tions 3 and 4)

d Filler particle diameter
E
&
, E

.
Filler and matrix modulus

E
0

Initial modulus of composite
E
#

Secant modulus of composite
E @

#
Value of composite modulus used to calcu-
late effective stress, r6 (Equation 8)

E
1
, E

2
Relative moduli of the filled and debonded
composite (Equations 4 and 5)

K Proportional constant of debonding rate
t Time (independent variable)
t
&

Time of failure (Equation 6)
e, e

5
Axial and transverse strain

e
"

Strain at break of composite
e
$

Strain at which debonding occurs
*l Displacement recorded by extensometer
/, /

"
, /

$
Filler volume fraction, overall (/), bonded
(/

"
) and debonded (/

$
)

/
.

Maximum packing fraction (Equation 4)
m, m

0
Poisson ratio and initial Poisson ratio

r, r6 , r
"

Applied stress, effective stress and stress at
break

f, f
$

Volume strain and volume strain due to
debonding

1. Introduction
The mechanical behaviour of multiphase materials,
such as filled and reinforced plastics or polymer
blends, is closely related to the degree of interfacial
adhesion between their various components. We have

all seen micrographs of fracture surfaces from which

0022—2461 ( 1997 Chapman & Hall
‘‘good’’ or ‘‘poor’’ adhesion is qualitatively evaluated.
A more ambitious approach aims to develop methods
which can follow the onset and development of dam-
age as it occurs during mechanical loading. One of the
more straightforward techniques is tensile dilatometry
(recently reviewed by Naqui and Robinson [1]). In
this method, the volume strain, f, calculated using
axial and transverse strains, e and e

5
, respectively

f"(1#e) (1!e
5
)2!1 (1)

is compared to the dilational response of the material
which is obtained from the low strain value of the
Poisson ratio, m

0
(Fig. 1). The point at which the

experimental f versus e curve departs from the dila-
tional response is an indication that the deformation
mechanism has changed. Cavitation mechanisms such
as debonding (or crazing) lead to an increase of vol-
ume strain with e compared to dilation. When the
volume strain increases at a rate slower than dilation,
the material is said to exhibit deviatoric behaviour
— a consequence of mechanisms such as shear yielding.
A number of authors have interpreted the mechanical
behaviour of filled polymers with the help of tensile
dilatometry [2—4] but the conclusions drawn from the
results are often contradictory. Using another ap-
proach, Vollenberg et al. [5], working with glass bead-
filled plastics, attributed a section of the tensile stress,
r, versus axial strain, e, curve to the debonding pro-
cess (see Fig. 2). In this case the first elastic stage (part
1), which corresponds to the deformation of well-
bonded composite, is followed by the onset and the
progression of debonding (part 2). The last stage (part
3) is attributed to processes such as crazing or shear
yielding.

In general, the effect of adding a second rigid phase
to polymers is to enhance the elastic (short-term,
small-strain) stiffness substantially, but the effect on

other properties is more complex to analyse. This is
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Figure 1 Volume strain, f , as function of axial strain, e (after Naqui
and Robinson [1]).

Figure 2 Different stages in a stress—strain behaviour of filled poly-
mers: (1) elastic, (2) debonding, (3) crazing and/or shear yielding
(after Vollenberg et al. [5]).

because, as a result of straining, the material proper-
ties change because of damage related to factors such
as filler/matrix debonding, but also due to the vis-
coelastic nature of the matrix. A number of studies
have been performed to evaluate the debonding result-
ing from the tensile loading. Newaz and Walsh [9]
studied it in sand and fly ash-filled epoxy resins. Using
the loading and unloading test, they showed that the
debonding process can be interpreted in terms of dam-
age mechanics. However, because only the rigid phase
(the filler) is excluded from the load bearing as the
debonding progresses, the material loses its stiffness
not only from the reduction of the effective section but
also from a reduction of the effective filler concentra-

tion in the remaining material. The model developed

1178
by Anderson and Farris [10—12], which was applied
to a filled polyurethane elastomer, calculates the non-
linear stress—strain behaviour using an energy bal-
ance. Their model has been used to predict the loss of
stiffness assuming separately either a reduction of the
effective filler concentration or an addition of voids,
both resulting from debonding. Volodin et al. [13]
have suggested that the stress and strain of filled
polymers can be described with the help of two para-
meters which depend on the volume fraction of the
filler, its particle shape and its interaction with the
matrix. Recently, a mathematical model developed
from the tensile stress—axial strain and from the vol-
ume strain—axial strain data has been proposed by
Zezin [14]. It describes the damage accumulation in
terms of debonded filler fraction. The micromechani-
cal model proposed by Ravichandran and Liu [15]
considers the debonding-induced damage as an iso-
tropic function depending on an internal variable. The
theory developed by Zhao and Weng [16] to describe
the debonding process in a ductile composite contain-
ing aligned oblate inclusions, uses a statistical function
to model the breakage of filler/matrix bonds. Other
authors have focused their studies on the modelling of
the stress distribution in filled polymers using finite
element analysis and on their fracture behaviour [17,
18]. Their results show the dependence of the debond-
ing stress on the filler/matrix interaction.

Despite a large body of literature on the mechanical
behaviour of filled polymers, most of the technological
data generated by and used in the industry is in the
form of properties such as yield or breaking stress and
elongation from the constant strain-rate tests. It
would certainly be desirable if this simple, most
widely-used mechanical test could also be used to
detect the onset and to follow the progression of
filler/matrix debonding (or of the other damage pro-
cess induced by the presence of a second phase in the
matrix). The objective of this work is to examine if and
how this information can be extracted from the tensile
stress—strain data of an elastic matrix filled with rigid
spherical inclusions. The debonding process is ana-
lysed theoretically — the material model takes into
account the gradual loss of stiffness caused both by the
filler matrix debonding and by the decrease of the
effective filler concentration in the material. The re-
sults are compared with experimental stress—strain
data of glass bead-filled polystyrene.

2. Experimental procedure
The polymer used in this study is an injection-grade
polystyrene (PS) of granular form (Dylark 232 from
ARCO Chemical Company, Scarborough, Ontario,
Canada). Glass beads (untreated and silane treated),
obtained from Potters Ballotini, were used as fillers.
The average bead diameter was about 45 lm. The
following compositions were moulded: 0, 5, 10, 20 and
40 vol % corresponding to 0, 11, 21, 38 and 62 wt%.
The PS and glass were first compounded on a twin-
screw extruder before being injection moulded. The
compounding and injection-moulding conditions

were those recommended by the resin supplier. The



Figure 3 Typical variation between crosshead strain and exten-
someter recorded strain as a function of time (PS#20 vol% un-
treated glass beads).

3 mm deep mould cavity had the ASTM D638-type
I tensile bar shape. A tensile testing machine with
crosshead speed of 5 mm min~1 (this corresponds to
about 0.12% s~1 strain rate) was used at 23 °C and
50% relative humidity. The strain data were collected
using two extensometers: an MTS 638.13C axial ex-
tensometer (gauge length 10 mm) and an Instron
Model 6048.007 transverse extensometer (variable
gauge length). The strains and the stress were recorded
simultaneously on a PC using a data acquisition soft-
ware at a frequency of 10 points/s. Fig. 3 shows the
actual gauge length of the increase, *l, recorded by the
axial extensometer, as a function of time for 20 vol %
composite. The strain is nearly proportional to the
crosshead displacement.

3. Experimental results
The results are summarized in Table I and Fig. 4
shows the stress—strain curves of PS containing be-
tween 0 and 40 vol% glass beads. The initial modulus,
E
0
, depends only on the glass content (it is indepen-

dent of the silane treatment). When Young’s modulus
is calculated using the Kerner—Lewis equation (see
Equation 3 below) [19], the calculated values are in
agreement with the experimental values. A ‘‘conven-
tional’’ cursory interpretation of the stress—strain
curves would attribute the departure of the ‘‘un-
treated’’ (NT) curve from its ‘‘treated’’ (T) counterpart
to an earlier onset of debonding (example for
20 vol%; at rK20 MPa and eK0.5%). Alterna-
tively, the debonding in the treated composite may be
said to begin at a higher stress. Our results show that
both the stress and strain at which the deviation from
linearity occurs depend on the filler content — this
finding appears to be at variance with those reported
by Dekkers [6] who found that the strain at which the
deviation starts is independent of filler content. The
stress at break is also lower for untreated rather than

treated glass beads. As far as the f versus e function is
TABLE I Tensile properties of PS/glass bead composites

/ E
0

(GPa) e
"

(%) r
"
(MPa) m

0
at break at break

T NT Calcu- T NT T NT T NT
lated!

0 2.84 1.8 44 0.31

0.05 3.14 3.11 3.13 2.40 2.0 50 46 0.29 0.29
0.10 3.50 3.47 3.47 2.10 1.70 48 41 0.28 0.28
0.20 4.38 4.33 4.36 1.45 1.20 44 37 0.27 0.27
0.40 7.75 7.70 7.90 0.65 0.63 38 37 0.26 0.26

!Using Equation 3 with /
$
"0, m"0.31, A

1
"1.11, B

1
"0.92 and

/
.
"0.64.

Figure 4 Tensile stress—strain curves, r versus e of filled PS. (— —)
Treated; (——) untreated glass beads. Numbers on curves denote
the glass concentration (vol%).

Figure 5 Volume strain, f, versus nominal strain, e, of PS filled with
20vol % glass beads. (20T) treated; (20NT) untreated glass. (——)
Dilational behaviour of filled PS.

concerned, the comparison between the filled and the
unfilled polymer shows a decrease in the initial value
of the Poisson ratio, m

0
(Table I) with increasing glass

content. The values found are in agreement with those

predicted by Chow’s model [20]. Fig. 5 shows the
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Figure 6 Scanning electron micrographs of PS#10 vol % glass beads; (a) untreated; (b) silane treated.
f versus e function of the 20 vol % filled PS in
the range of strains of e)1.5%. The differences be-
tween the measured volume strain and that calculated
using a low-strain Poisson ratio of m

0
"0.27, are very

small and cannot be used accurately to detect the
onset of debonding. This suggests that the dilatometry
is more useful for materials able to withstand larger
strains.

Scanning electron micrographs of surfaces taken
following tensile fracture (Fig. 6) clearly show that the
debonding process occurred, although it would be
difficult to infer any differences in the degree of inter-
facial adhesion between the treated and untreated
beads.

4. The model
The model is based on the following assumptions (see
Fig. 7).

1. Initially, all filler particles (volume fraction, /)
are well bonded to the matrix (bonded filler volume
fraction /

"
"/, Fig. 7a). The material behaviour can

be described by the Kerner—Lewis equation (see be-
low).

2. Upon straining, the filler particles become pro-
gressively debonded (/

"
"/!/

$
, /

$
being the de-

bonded filler volume fraction). The debonded particles
do not bear any load (Fig. 7b).

3. The completely debonded composite (/
"
"0,

/
$
"/) behaves as a foam containing a volume frac-

tion of voids equal to /
$

(Fig. 7c). Its behaviour can
also be described by the Kerner—Lewis equation.

4. The debonding rate (d/
$
/dt) depends on the

applied stress and the number of particles available for
debonding (/!/

$
).

During the constant strain-rate tensile test
(de/dt"const), the applied stress, r, follows the rela-
tion

dr

dt
"

d (E
#
e)

dt
"e A

dE
#

dt B#E
# A

de

dtB (2)

where E is the secant modulus of the composite. The

#

modulus, E
#
, decreases as debonding progresses. The
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Figure 7 Schematic representation of a filled polymer subjected to
uniaxial tension. (a) Well-bonded composite, (b) partially debonded
composite, and (c) fully debonded composite.

partially debonded composite containing a volume
fraction, /, of the filler (of which /

$
is debonded:

0)/
$
)/) is considered to consist of three compo-

nents: (i) matrix (modulus E
.

), (ii) bonded filler (volume
fraction [/!/

$
], modulus E

&
), and (iii) debonded

filler (each vacuole containing a debonded filler par-
ticle behaves as a void). The modulus of such hybrid
material can be described by the Kerner—Lewis equa-
tion [19]

E
#
"E

.
E
1

E
2

(3)

where E
1

represents the relative modulus of the still
bonded-filled material

E
1
"

1#A
1

B
1

(/!/
$
)

1!B
1

w (/!/
$
)

(4)

with A
1
"(7!5m)/(8!10m), B

1
"(E

&
/E

.
!1)/

(E
&
/E

.
#A

1
) and w"1#/ (1!/

.
)//2

.
, m is the

Poisson ratio of the matrix, w is a ‘‘crowding factor’’
which depends on /

m
(the maximum packing fraction

of the filler). The modulus, E
2
, is the relative modulus

of the foam with a void fraction equal to /
$
.E

2
is then

given by

1!/

E
2
" $

1!B
2

w /
$

(5)



with B
2
"!1/A

1
. It is worth noting that the

Kerner—Lewis equation and other expressions of this
type have been successfully applied to hybrid mater-
ials [21] and to high-density foams [22].

Considering the heterogeneous nature of materials
under consideration it seems reasonable to adapt
Bartenev’s equation [23, 24] for time to failure, t

&
, of

a material subjected to an effective stress, r6 . This
equation, originally developed for materials contain-
ing defects, is written here in simplified form

t
&
"

exp (!B r6 )
K r6

(6)

The constants B and K depend on the temperature,
the material molecular structure, and the nature and
number of defects. It should be noted that this and
other equations (e.g. Zhurkov—Bueche [25]) relating
the time to failure to the applied stress have a theoret-
ical basis and are often considered as interpolation
formulas of a semi-empirical nature — useful for the
mathematical expression of experimental data. Ap-
plying the Bartenev concept to a filled material, we
assume that the time to failure of the filler/matrix
interface can be described by Equation 6. The prob-
ability of debonding is proportional to 1/t

&
. The

debonding rate, d/
$
/dt, is then considered to be pro-

portional to Kr6 exp (Br6 ) (the constants K and B are
related to the overall behaviour of the filled material
rather than only to that of single particle/matrix inter-
face, r6 is the effective stress — see below) and to
(/!/

$
)

d/
$

dt
"(/!/

$
) K r6 exp (B r6 ) (7)

The effective stress, r6 , which acts only on the matrix
and on the still-bonded filler, can be related to the
measured stress, r (which is calculated using the entire
sample cross-section, including its debonded portion),
using the strain equivalence principle [26]. A material
containing a filler fraction (/!/

$
) but no voids will

have a modulus E@
#

E @
#
"E

.
E

-
(8)

According to the strain equivalence principle

e"
r6
E @

#

"

r

E
#

(9)

This leads to

r6 "
r

E
2

(10)

Because

dE
#

dt
"

dE
#

d/
$
A
d/

$
dt B (11)

a simultaneous solution of Equations 2 and 7 can be
obtained using known values of E

.
, de/dt and /, and

using Equations 3—5, 10 and 11.
Solution of Equations 2 and 7 using the fourth-

order Runge Kutta method, yields the value of the
secant modulus, E , and of the debonded fraction, / .
# $
To determine the appropriate values of K and B, the
calculated results are compared, with the help of the
Marquardth—Levenberg algorithm, to the values of /

$
computed from the experimental stress—strain data
using Equation 3.

The volume increase due to debonding, f
$
, can also

be calculated assuming, for example, that each void
created by debonding of a spherical particle (diameter
d) is an ellipsoid with its two shorter axes equal to
d and its longer axis equal to d [1#(e!e

$
)], where e

$
represents the strain at which the particle becomes
debonded [14]. It follows that

f
$
"P

e

0

/
$

de (12)

5. Results and discussion
Two extreme cases of stress—strain curves of a com-
posite material, calculated using properties of polysty-
rene (E

.
"2.84 GPa, m

0
"0.31) and glass beads

(E
&
"72 GPa, m"0.25) with /"0.2 and de/dt"

1.22]10~3 s~1 are shown in Fig. 8. When BP0, the
debonding rate is proportional to the effective stress,
r6 . The measured stress r versus e function (curve 5)
starts to deviate from linearity at relatively low strains
and moves to the completely debonded material (line
3) over a broad range of strains. When B is very large,
all the debonding occurs at a nearly constant effective
stress, r6 (curve 4, calculated using K"2.9]10~20

MPa~1 s~1 and B"4 MPa~1). The material then
exhibits what in r versus e presentation appears as
a yield — the measured stress, r, decreases as the
material approaches the fully debonded state.

The corresponding /
$

versus e and /
$

versus
r6 curves are shown in Fig. 9. The shapes of these
curves suggest that the Bartenev-type equation can
cover the range of situations likely to be found in

Figure 8 Stress—strain curves calculated using Equations 2 and 7,
with /"0.2 and E

.
"const"2.84 GPa (see text): (1) Bonded

composite (K"0); (2) matrix; (3) fully debonded composite
(KPR); (4, 5) limiting cases when all debonding occurs at con-

stant effective stress r6 (KP0, BPR; curve 4) and when the
debonding rate is proportional to r6 (B"0; curve 5).
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Figure 9 Debonded filler fraction, /
$
, as a function of effective

stress, r6 , and as a function of strain, e, calculated using Equations
2 and 10. The curves are numbered as in Fig. 8.

multiphase materials. In a perfectly uniform, ordered
composite the debonding might indeed occur at a con-
stant effective stress (case 4, KP0, BPR). In a real
material, in which the dispersed phase distribution is
at best uniformly random, the particles are of different
sizes and shapes, and local stress fluctuations are
caused not only by the material inherent heterogenei-
ties but also by residual stresses which vary through-
out the thickness, the debonding will obviously occur
over a broader range of stress and strain. The question
is whether, in most ‘‘real’’ materials, the debonding
process (or other type of damage) can be described by
curves situated between the extreme cases of curves
4 and 5 in Figs 8 and 9.

Before considering the applicability of the proposed
model, let us evaluate the debonding process with the
help of Equation 3. The solution of Equation 3 makes
it possible to calculate the volume fraction of the
debonded filler, /

$
, using the experimentally deter-

mined values of E
#
and E

.
. Fig. 10 shows the secant

modulus, E
.
, of neat PS as a function of strain. Be-

yond 0.95%, a slow decrease in secant modulus is
recorded. This shows that the matrix is not elastic over
the whole range of strains studied (Fig. 4). For
example, at 0.5%, 1.5% and 2%, the experimental
values of E

.
are 2.84, 2.77 and 2.68 GPa, respectively.

The curves in Fig. 11 show the volume fraction of
debonded filler, /

$
, calculated from Equation 3 when

E
.

is taken as a constant (full line) and from experi-
mental stress—strain data of the matrix (dotted line, for
/"0.2). Because the error induced by an assumption
of constant matrix modulus is small, all calculations
shown below were made with the E

.
"const."

2.84 GPa.
The following comments concerning the concentra-

tion dependence of the debonded filler fraction can be
made.

(a) The strain, e , at which the debonding appears,

decreases with increasing filler concentration. This has
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Figure 10 Secant modulus of neat PS as a function of strain.

Figure 11 Volume fraction of debonded glass beads, /
$
, as

a function of strain, e, for different glass concentrations; calculated
from experimental data of the matrix and of composites using
Equation 2. (. . .) Calculated using a constant value of
E
.
"2.84 GPa.

been attributed to the thermal stress resulting from the
differences of the matrix and filler thermal expansion
coefficients. This thermal stress, which tends to shrink
the matrix around the filler as the composite is cooled
from the moulding temperature, decreases with in-
creasing filler content [5]. The debonding process is
also related to the area occupied by the filler. The
calculated stress distribution around a filler changes
with filler content [17].

(b) At /"0.05, the volume fraction of de-
bonded filler, /

$
, shows a certain plateau at a strain

eK1.2%. This corresponds to a point when about
half of the beads have debonded. Because the mater-
ials used here were all made by the injection-moulding
process, most material properties exhibit significant
variations throughout the thickness due to phe-
nomena such as matrix orientation, residual stress, etc.

[27]. In glassy polymers, in particular, the properties



Figure 12 ( . . .) Calculated and (——) experimental stress—strain
curves of filled PS. Debonded volume, f

$
, was calculated using

Equation 12.

of the highly oriented skin and of the more or less
randomly oriented core are known to be very different
[28]. It is conceivable that the particular shape of
the /

$
versus e curve at /"0.05 is related to the

layered structure of injection mouldings. For the other
concentrations, the samples break well before half of
the filler has debonded and before the plateau (if one
exists) becomes visible.

(c) One of the interesting results of this work is that
the effect of surface treatment on the debonding pro-
cess is somewhat different from that previously re-
ported. The debonding starts at about the same strain
for both materials, treated and untreated (for example,
at eK0.4% when /"0.2 vol %) but the rate of de-
bonding (d/

$
/de) is higher in the absence of the coup-

ling agent.
(d) All composites broke before the fully debonded

state was reached.
Fig. 12 shows the experimental and calculated data

of stress—strain curves of 20 vol% filled PS. Although,
as mentioned above, both materials (NT and T) break
well before complete debonding (the r versus e curves
do not even cross the neat PS curve), the experimental
stress—strain data can be matched to curves calculated
using appropriate values of K and B. They are
K"0.29]10~3 MPa~1 s~1, B"6.22]10~2 MPa~1

for untreated beads composite, and K"0.34]10~3

MPa~1 s~1 , B"3.80]10~2 MPa~1 for the 20 vol %
composite made with treated beads. The debonded
fraction, /

$
, dependence on the strain determined

from the experimental data using Equation 3 also
corresponds to that calculated from the theoretical
model (Fig. 13). The volume strain due to debonding,
f
$
, shown in Fig. 12, calculated using Equation 12, is

very small and appears to be of the same order of
magnitude as the difference between the measured and
dilational behaviours shown in Fig. 5. For other glass
concentrations, similar agreement between the pre-
dicted and experimental results was obtained.

Optimized values of constants K and B are listed in

Table II. The pre-exponential constant K appears to
Figure 13 Debonded filler fraction, /
$
, as a function of strain, e,

(——) calculated using Equations 3—5 from experimental r versus
e data of 20 vol% composites, ( . . .) Predicted by the model using
values K and B of Table II.

TABLE II K/ and B values of polystyrene/glass beads com-
posites (T) treated and (NT) untreated glass

/ K/ (10~4 MPa~1 s~1) B (10~2 MPa~1)

T NT T NT

0.05 0.70 0.56 2.78 5.17
0.10 0.69 0.61 3.13 5.80
0.20 0.67 0.59 3.80 6.22
0.40 0.65 0.57 4.13 5.82

Figure 14 Values of K/ (10~4 MPa~1 s~1) and of B (10~2

MPa~1) as a function of /. (d) Untreated, (s) treated.

be inversely proportional to / while the value of
B increases with the glass concentration (Fig. 14). Be-
cause the function (Kr6 expBr6 ) really represents
a probability that a filler particle embedded in the
matrix will debond when the composite is subjected to
a stress, r6 , it is interesting to consider its dependence

on the stress and strain. Fig. 15 shows how Kr6 exp (Br6 )
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Figure 15 Debonding probability Kr6 exp(Br6 ) as a function
of stress, r6 , for /"0.10 (treated glass, K"0.68]10~3 MPa~1

s~1, B"3.11]10~2 MPa~1 ; untreated glass, K"0.58]10~3

MPa~1 s~1 , B"5.62]10~2 MPa~1) and /"0.25 (treated
glass, K"0.27]10~3 MPa~1 s~1 , B"4.25]10~2 MPa~1 ;
untreated glass, K"0.23]10~3 MPa~1 s~1 , B"6.61]10~2

MPa~1).

varies with the stress, r6 , for two concentrations of
glass beads: 10 and 25 vol% (values of K and B used
were extrapolated from Fig. 14). For both concentra-
tions, the effect of silane treatment is important. At
a given applied stress, the probability of debonding
increases with decreasing filler concentration. This can
be attributed to the fact that the stress concentration
at the interface is influenced by the magnitude of
stiffness differential between the particle and the sur-
rounding material. With a higher filler concentration,
this differential is smaller and, at a given value of
stress, the local stress at the interface will be
lower, leading to a lower probability of debonding.
This observation, based on experimental results, is in
agreement with the finite element analysis of a com-
posite material containing randomly distributed rigid
spherical particles [17]. When the value of
Kr6 exp(Br6 ) is followed as a function of strain, for
example by drawing Kr6 exp (Br6 ) versus r6 /E

0
as in

Fig. 16, the higher stress required to deform the stiffer,
more filled, material predominates and the
Kr6 exp(Br6 ) assumes, at a given strain, a higher value
than for a composite containing a smaller amount of
filler.

Finally, the results presented so far can be used
to validate a simple method for detection of debon-
ding. When the ratio of secant moduli, E

#
/E

.
,

is plotted against the strain e (Fig. 17), virtually
the same conclusions as to the onset and the rate of
debonding can be drawn from it as from the more
complex treatment that led to the /

$
versus e

graphs (shown in Fig. 12). The same approach can be
applied to other materials including those made with
viscoelastic matrix (E

.
Oconst) and/or with non-

spherical fillers. The results will be made available

shortly.
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Figure 16 Debonding probability Kr6 exp(Br6 ) as a function of
strain function (r6 /E

0
), using the same notation as in Fig. 15.

Figure 17 Secant moduli ratio, E
#
/E

.
, as a function of strain, e .

(——) Experimental and (. . . ) calculated from the model.

6. Conclusion
A simple model has been used to describe a particulate
composite undergoing a constant strain—rate test.
The stress—strain behaviour and the debonding is
modelled using a Bartenev-type relation for the de-
struction of interfacial bonds and by considering
the gradual transformation of the initially well-
bonded composite into foam. The volume change
resulting from debonding is small compared to
dilational response. The debonding starts at about
the same strain in composite-filled material with
a given volume fraction of silane-treated and un-
treated glass beads, but the rate of debonding is higher
in the absence of the coupling agent. A good
agreement was achieved between calculated and ex-
perimental data. The relative loss of stiffness (E

#
/E

.
)

during the test is directly related to the debonding

process.
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